

KHYBER PAKHTUNKHWA, PUBLIC SERVICE COMMISSION, PESHAWAR.

SUBJECT:- COMPETITIVE EXAMINATION FOR THE POSTS OF PROVINCIAL MANAGEMENT SERVICES (BPS-17)

(2010)

PURE MATHS (PAPER-II)

Time Allowed: 03 hours		Max: Marks: 100	
Instructions: (i) Atlempt PIVE EN	vestions in all, believed	ing at least THREE	
Section-B.	Viet of formulae		
(10) 1111 6	· ·		
	SECTION-A	ear /x+8/ = x/+18). to, then find rem to sumo that	(10)
I (a) For arbitrary of When does es	nality hold?	to, then find	(10)
(b) If f(x) =)=	23		
I (a) Use transposing	value Theo:	rem to sumo that	(10)
Il (a) Use trangenting	W MEAN VI	al numbers x and y.	
Sin x - Sin 3	sion B. Show that	$\frac{\beta(m+l)n)}{\beta(m+l)} = \frac{m}{n}$	(10)
(b) for Beta fu	a of the region lying	y between the curve imptotes.	(10)
1 (x) + (x2+x7) = 2	(g2-x2) and its all	mpc.	(10)
(b) Evaluate &	1-x 52x xy ± d ± dy dx	· I how hopel of the	(10)
	all exist in the ne	is at (a, b), then	
W (a) 4 fx) (7) 8	ed fyx is continued at (a, b) and fry = tyx	
show that for	function f (n, 8) at origin, but that	igh bourhood of the is at (a, b), then a, b) and fry = fyx: = (1281) is not 2# and 2# both	(10)
(b) prove	+ prigin, but wor	Ox and oy	
differentiable of	ongin .		

- V (a) Define metric space. Let A be a subset of a metric space from that interior of A denoted by A is the union of all open sets contained in A.
 - (b) Define continuity in metric space If (x,d) and (4,d) are two metric spaces, then prove that a function f: X -> y is continuous on X iff the inverse image of each open subset of Y is open in X.

SECTION-B in any clomain

(b) Determine the isolated singularities of each function: (5,5

(40)

(i) $f(2) = \frac{x^2 - 1}{x^2 + 1}$ (ii) $f(2) = \frac{4z^2 + 5z + 3}{2z^4 + z^2 - 13z^2 + z - 15}$

VII (a) Using Cauchy Integral Theorem, Show that $\int \frac{\cos 2 + \cos h(\frac{2}{2})}{(2^2 + 16)(2^2 - 25)} dz, \text{ where } \Gamma \text{ is simple closed}$

contour represented by circle 121=2.

- (b) Expand in a Taylor Series the function of defined by (1) $f(z) = \log z = \log |z| + i \operatorname{Arg} z \left(-\pi < \operatorname{Arg} z \leq \pi\right)$ about the point to = -1+i.
- Vill (a) Obtain the Laurant series expansion in power (10 of 2 for the function defined by $f(z) = \frac{1}{(z-1)(z-3)}$
 - (b) Using Couchy Residue Theorem, show that $\int_{C} \frac{2^{2}+4}{(2-i)(2+i)} dz = 0, \text{ where } C \text{ is the circle } 121=1$ described in the positive olivection :